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Abstract

Soil moisture plays a major role in the global hydrologic cycle. Most importantly, soil mois-
ture controls the partitioning of available energy at the land surface into latent and sensible
heat fluxes. We investigate the feasibility of estimating large-scale soil moisture profiles
and related land surface variables from low-frequency (L-band) passive microwave remote
sensing observations using weak-constraint variational data assimilation. We extend the
iterated indirect representer method, which is based on the adjoint of the hydrologic model,
to suit our application. The four-dimensional (space and time) data assimilation algorithm
takes into account model and measurement uncertainties and provides optimal estimates
by implicitly propagating the full error covariances. Explicit expressions for the posterior
error covariances are also derived. We achieve a dynamically consistent interpolation and
extrapolation of the remote sensing data in space and time, or equivalently, a continuous
update of the model predictions from the data. Our hydrologic model of water and energy
exchange at the land surface is expressly designed for data assimilation. It captures the key
physical processes while remaining computationally efficient.

The assimilation algorithm is tested with a series of experiments using synthetically
generated system and measurement noise. In a realistic environment based on the Southern
Great Plains 1997 (SGP97) hydrology experiment, we assess the performance of the algo-
rithm under ideal and nonideal assimilation conditions. Specifically, we address five topics
which are crucial to the design of an operational soil moisture assimilation system. (1)
We show that soil moisture can be satisfactorily estimated at scales finer than the resolu-
tion of the brightness images (downscaling), provided sufficiently accurate fine-scale model
inputs are available. (2) The satellite repeat cycle should be shorter than the average in-
terstorm period. (3) The loss of optimality by using shorter assimilation intervals is offset
by a substantial gain in computational efficiency. (4) Soil moisture can be satisfactorily
estimated even if quantitative precipitation data are not available. (5) The assimilation al-
gorithm is only weakly sensitive to inaccurate specification of the soil hydraulic properties.
In summary, we demonstrate the feasibility of large-scale land surface data assimilation
from passive microwave observations.
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